0000000000885196

AUTHOR

Karl-wilhelm Koch

Functional Characterization of a Guanylyl Cyclase-activating Protein from Vertebrate Rods

The membrane-bound guanylyl cyclase in vertebrate photoreceptor cells is one of the key enzymes in visual transduction. It is highly sensitive to the free calcium concentration ([Ca2+]). The activation process is cooperative and mediated by a novel calcium-binding protein named GCAP (guanylyl cyclase-activating protein). We isolated GCAP from bovine rod outer segments, determined amino acid sequences of proteolytically obtained peptides, and cloned its gene. The Ca2+-bound form of native GCAP has an apparent molecular mass of 20.5 kDa and the Ca2+-free form of 25 kDa as determined by SDS-polyacrylamide gel electrophoresis. Recombinant GCAP was functionally expressed in Escherichia coli. Act…

research product

Interaction of glutamic-acid-rich proteins with the cGMP signalling pathway in rod photoreceptors.

The assembly of signalling molecules into macromolecular complexes (transducisomes) provides specificity, sensitivity and speed in intracellular signalling pathways. Rod photoreceptors in the eye contain an unusual set of glutamic-acid-rich proteins (GARPs) of unknown function. GARPs exist as two soluble forms, GARP1 and GARP2, and as a large cytoplasmic domain (GARP' part) of the beta-subunit of the cyclic GMP-gated channel. Here we identify GARPs as multivalent proteins that interact with the key players of cGMP signalling, phosphodiesterase and guanylate cyclase, and with a retina-specific ATP-binding cassette transporter (ABCR), through four, short, repetitive sequences. In electron mic…

research product