0000000000885319

AUTHOR

C. Haimberger

Near-dissociation photoassociative production of deeply bound NaCs molecules

We demonstrate that a photoassociation resonance detuned less than a wave number below the Cs 6 {sup 2}P{sub 3/2} atomic line can be used to create a deeply bound molecular sample of ultracold polar NaCs. We assign 1 {sup 1}{Sigma}{sup +} (v=4,5,6,11,19) vibrational levels utilizing a pulsed depletion spectroscopic method (scanning {approx}700 cm{sup -1} at a time) in which we observe the 1 {sup 1}{Sigma}{sup +}{yields}2 {sup 1}{Sigma}{sup +}-1 {sup 3{Pi}} vibrational progression. These data are compared with results from a hot-molecule collision-enhanced laser-induced fluorescence experiment and shown to be in good agreement. This technique is a powerful tool to experimentally determine th…

research product

Identification of Deeply Bound Heteronuclear Molecules Using Pulsed Laser Depletion Spectroscopy

We demonstrate that a near-dissociation photoassociation resonance can be used to create a deeply bound molecular sample of ultracold NaCs. To probe the resulting vibrational distribution of the sample, we use a new technique that can be applied to any ultracold molecular system. We utilize a tunable pulsed dye laser to produce efficient spectroscopic scans ($\sim700$ cm$^{-1}$ at a time) in which we observe the $1^{1} \Sigma^{+}\rightarrow 2^{1}\Sigma^{+}-2^{3}\Pi$ vibrational progression, as well as the dissociation limit to the Cs 6$^{2}$P$_{3/2}$ asymptote. We assign $1^{1} \Sigma^{+}$$(\emph{v}$ = 4, 5, 6, 11, 19) vibrational levels in our sample.

research product