0000000000885416

AUTHOR

Jonna Stålring

Theoretical studies of isomers of C 3 H 2 using a multiconfigurational approach

The C3H2 isomers are important molecules in interstellar space. An understanding of their electronic structure can contribute significantly to the interpretation of interstellar spectra. In a theoretical study of the C3H2 isomers a multiconfigurational treatment is of interest because many of the isomers are carbenes or diradicals. We present such an investigation of all possible C3H2 isomers. The most important features of their electronic and vibrational spectra are calculated. Earlier theoretical studies are reviewed and it is shown that the present study yields the same order of stability for the singlet and triplet states as most previous studies.

research product

Theoretical studies on the spectroscopy of the 7-azaindole monomer and dimer

The absorption and the emission spectra, both fluorescence and phosphorescence, of the 7-azaindole molecule have been studied by means of the complete active space (CAS) SCF method and multiconfigurational second-order perturbation theory (CASPT2). Excitation energies, oscillator strengths, dipole moments, transition dipole moments, and their directions have been computed and the results compared to those of analogous molecules such as indene, indole, and benzimidazole, to get a homogeneous picture of the photophysics of the systems. The absorption and emission of the 7-azaindole dimer and its related tautomer have also been computed in order to get further insight into the double fluoresce…

research product

Similarity boosted quantitative structure-activity relationship--a systematic study of enhancing structural descriptors by molecular similarity.

The concept of molecular similarity is one of the most central in the fields of predictive toxicology and quantitative structure-activity relationship (QSAR) research. Many toxicological responses result from a multimechanistic process and, consequently, structural diversity among the active compounds is likely. Combining this knowledge, we introduce similarity boosted QSAR modeling, where we calculate molecular descriptors using similarities with respect to representative reference compounds to aid a statistical learning algorithm in distinguishing between different structural classes. We present three approaches for the selection of reference compounds, one by literature search and two by…

research product