0000000000885494

AUTHOR

Susana C. M. Fernandes

showing 2 related works from this author

Influence of chitin nanocrystals on the dielectric behaviour and conductivity of chitosan-based bionanocomposites

2018

[EN] A series of bionanocomposite films based on chitosan, reinforced with chitin nanocrystals, were developed, and assessed in terms of dielectric behaviour and conductivity by using an experimental methodology that allows avoiding the conductivity contribution and the exclusion of contact and interfacial polarization effects. The dielectric relaxations at low and high frequency and temperatures were modeled by Havriliak-Negami functions. Below the glass transition temperature (Tg), the gamma and beta relaxations were observed, which were related to intramolecular and non-cooperative segmental movements. At higher temperatures, an intermolecular and cooperative macromolecular movement, rel…

BionanocompositesSolucions polimèriquesMaterials scienceMaterial testingIonic bonding02 engineering and technologyDielectricActivation energyConductivity010402 general chemistry01 natural sciencesChitosanchemistry.chemical_compoundElectrical resistivity and conductivity[CHIM.ANAL]Chemical Sciences/Analytical chemistryComposite materialsChitosanChitosanIntermolecular forceGeneral EngineeringINGENIERIA DE LOS PROCESOS DE FABRICACION[CHIM.MATE]Chemical Sciences/Material chemistryCiència dels materials021001 nanoscience & nanotechnology0104 chemical sciencesChitin nanocrystals[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringchemistryMAQUINAS Y MOTORES TERMICOSCeramics and CompositesChitin nanocrystal0210 nano-technologyGlass transitionDielectric thermal analysis (DETA)
researchProduct

Gas Barrier, Rheological and Mechanical Properties of Immiscible Natural Rubber/Acrylonitrile Butadiene Rubber/Organoclay (NR/NBR/Organoclay) Blend N…

2020

In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases—O2 and CO2—by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition—it was observed that the increase in acrylonitrile butadiene rubber compon…

Materials science02 engineering and technology010402 general chemistry01 natural scienceslcsh:Technologychemistry.chemical_compound[SPI]Engineering Sciences [physics]Natural rubberOrganoclayGeneral Materials ScienceNitrile rubberlcsh:Microscopylcsh:QC120-168.85Nanocompositelcsh:QH201-278.5lcsh:TCommunicationPermeationpolymer blend021001 nanoscience & nanotechnology0104 chemical sciencesnanoclaychemistryChemical engineeringPermeability (electromagnetism)lcsh:TA1-2040visual_artvisual_art.visual_art_mediumlcsh:Descriptive and experimental mechanicsPolymer blendnanoclay.lcsh:Electrical engineering. Electronics. Nuclear engineeringgas permeabilityAcrylonitrile0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971
researchProduct