Multiple positive solutions for singularly perturbed elliptic problems in exterior domains
Abstract The equation − e 2 Δ u + a e ( x ) u = u p −1 with boundary Dirichlet zero data is considered in an exterior domain Ω = R N ⧹ ω ( ω bounded and N ⩾2). Under the assumption that a e ⩾ a 0 >0 concentrates round a point of Ω as e →0, that p >2 and p N /( N −2) when N ⩾3, the existence of at least three positive distinct solutions is proved.