0000000000886604

AUTHOR

Frederik Fleissner

Tension Causes Unfolding of Intracellular Vimentin Intermediate Filaments

Intermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations show that IF proteins undergo secondary structural changes to compensate mechanical loads, which is confirmed by experimental in vitro studies on IF hydrogels. However, the structural response of intracellular IF to mechanical load is yet to be elucidated in cellulo. Here, in situ nonlinear Raman imaging combined with multivariate data analysis is used to quantify the intracellular secondary structure of the IF cytoskeletal protein viment…

research product

Tension causes structural unfolding of intracellular intermediate filaments

AbstractIntermediate filament (IF) proteins are a class of proteins that constitute different filamentous structures in mammalian cells. As such, IF proteins are part of the load-bearing cytoskeleton and support the nuclear envelope. Molecular dynamics simulations have shown that IF proteins undergo secondary structural changes to compensate mechanical loads, which has been confirmed by experimental in vitro studies on IF hydrogels. However, the structural response of intracellular IF to mechanical load has yet to be elucidated in cellulo. Here, we use in situ nonlinear Raman imaging combined with multivariate data analysis to quantify the intracellular secondary structure of the IF cytoske…

research product