0000000000886867
AUTHOR
Sebastian Buchta
Theoretical foundations and applications of the Loop-Tree Duality in Quantum Field Theories
152 páginas. Tesis Doctoral del Departamento de Física Teórica, de la Universidad de Valencia y del Instituto de Física Corpuscular (IFIC).
Tree-Loop Duality Relation beyond simple poles
We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.
The loop-tree duality at work
We review the recent developments of the loop-tree duality method, focussing our discussion on analysing the singular behaviour of the loop integrand of the dual representation of one-loop integrals and scattering amplitudes. We show that within the loop-tree duality method there is a partial cancellation of singularities at the integrand level among the different components of the corresponding dual representation. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.
Numerical implementation of the Loop-Tree Duality method
We present a first numerical implementation of the Loop-Tree Duality (LTD) method for the direct numerical computation of multi-leg one-loop Feynman integrals. We discuss in detail the singular structure of the dual integrands and define a suitable contour deformation in the loop three-momentum space to carry out the numerical integration. Then, we apply the LTD method to the computation of ultraviolet and infrared finite integrals, and present explicit results for scalar integrals with up to five external legs (pentagons) and tensor integrals with up to six legs (hexagons). The LTD method features an excellent performance independently of the number of external legs.
On the singular behaviour of scattering amplitudes in quantum field theory
We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop--tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.