0000000000886997

AUTHOR

Stefan Lindemann

showing 2 related works from this author

$^{222}$Rn emanation measurements for the XENON1T experiment

2021

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribut…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Radon emanationFOS: Physical scienceschemistry.chemical_element01 natural sciencesNOHigh Energy Physics - Experimentradon: nuclideHigh Energy Physics - Experiment (hep-ex)XENONXenon222 RnPE2_2PE2_10103 physical sciencesActivity concentration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)background: radioactivityPhysicsradon: admixture010308 nuclear & particles physicsdetector: surfacescreeningInstrumentation and Detectors (physics.ins-det)chemistryXenon Dark matter 222 Rn radioactivityDark Matter Radon emanation XENON Direct Dark MatterDirect Dark MatterradioactivityAtomic physics
researchProduct

The distributed Slow Control System of the XENON100 experiment

2012

The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recordi…

Physics - Instrumentation and Detectorsarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]JavaComputer scienceReal-time computingFOS: Physical scienceschemistry.chemical_elementControl and monitor systems online; Control systems; Detector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)algorithms01 natural sciencesXenon0103 physical scienceshardwareDETECTOR CONTROL SYSTEMS[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]CONTROL SYSTEMS010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMathematical Physicscomputer.programming_languageTime projection chamber010308 nuclear & particles physicsbusiness.industryControl and monitor systems onlineDetector control systems (detector and experiment monitoring and slow-control systemsEmphasis (telecommunications)Volume (computing)Instrumentation and Detectors (physics.ins-det)Modular design[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]chemistryControl systemAstrophysics - Instrumentation and Methods for Astrophysicsdatabases)businesscomputerSystem software
researchProduct