0000000000887481

AUTHOR

J. M. Alarcon

The strangeness content of the nucleon from effective field theory and phenomenology

We revisit the classical relation between the strangeness content of the nucleon, the pion-nucleon sigma term and the $SU(3)_F$ breaking of the baryon masses in the context of Lorentz covariant chiral perturbation theory with explicit decuplet-baryon resonance fields. We find that a value of the pion-nucleon sigma term of $\sim$60 MeV is not necessarily at odds with a small strangeness content of the nucleon, in line with the fulfillment of the OZI rule. Moreover, this value is indeed favored by our next-to-leading order calculation. We compare our results with earlier ones and discuss the convergence of the chiral series as well as the uncertainties of chiral approaches to the determinatio…

research product

πNscattering in relativistic baryon chiral perturbation theory reexamined

We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of infrared regularization up to $\mathcal{O}({q}^{3})$ in the chiral expansion, where $q$ is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with heavy baryon chiral perturbation theory, $\sqrt{s}\ensuremath{\lesssim}1.14$ GeV. New values are provided for the $\mathcal{O}({q}^{2})$ and $\mathcal{O}({q}^{3})$ low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data …

research product