Structural and Dynamic Properties of the Homodimeric Hemoglobin from Scapharca inaequivalvis Thr-72→Ile Mutant: Molecular Dynamics Simulation, Low Temperature Visible Absorption Spectroscopy, and Resonance Raman Spectroscopy Studies
AbstractMolecular dynamics simulations, low temperature visible absorption spectroscopy, and resonance Raman spectroscopy have been performed on a mutant of the Scapharca inaequivalvis homodimeric hemoglobin, where residue threonine 72, at the subunit interface, has been substituted by isoleucine. Molecular dynamics simulation indicates that in the Thr-72→Ile mutant several residues that have been shown to play a role in ligand binding fluctuate around orientations and distances similar to those observed in the x-ray structure of the CO derivative of the native hemoglobin, although the overall structure remains in the T state. Visible absorption spectroscopy data indicate that in the deoxy …