A covariant constituent-quark formalism for mesons
Using the framework of the Covariant Spectator Theory (CST) [1] we are developing a covariant model formulated in Minkowski space to study mesonic structure and spectra. Treating mesons as effective $q\bar{q}$ states, we focused in [2] on the nonrelativistic bound-state problem in momentum space with a linear confining potential. Although integrable, this kernel has singularities which are difficult to handle numerically. In [2] we reformulate it into a form in which all singularities are explicitely removed. The resulting equations are then easier to solve and yield accurate and stable solutions. In the present work, the same method is applied to the relativistic case, improving upon the r…
Linear confinement in momentum space: singularity-free bound-state equations
Relativistic equations of Bethe-Salpeter type for hadron structure are most conveniently formulated in momentum space. The presence of confining interactions causes complications because the corresponding kernels are singular. This occurs not only in the relativistic case but also in the nonrelativistic Schr\"odinger equation where this problem can be studied more easily. For the linear confining interaction the singularity reduces to one of Cauchy principal value form. Although this singularity is integrable, it still makes accurate numerical solutions difficult. We show that this principal value singularity can be eliminated by means of a subtraction method. The resulting equation is much…