0000000000888485

AUTHOR

Shoshana J. Wodak

0000-0002-0701-6545

showing 2 related works from this author

CYGD: the Comprehensive Yeast Genome Database.

2005

The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.; International audience; The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular network…

ved/biology.organism_classification_rank.speciesSACCHAROMYCES CEREVISIAE GENOME;COMPREHENSIVE YEAST GENOME DATABASE;CYGD;PROTEIN INTERACTION;EUROPEAN CONSORTIUM;SEQUENCE INFORMATION;YEAST GENOME;SEQUENCED EUKARYOTIC GENOMEcomputer.software_genreGenomeSaccharomycesUser-Computer InterfaceSequence Analysis ProteinDatabases GeneticYEAST GENOME[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]0303 health sciences[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]biologyDatabase030302 biochemistry & molecular biologyEUROPEAN CONSORTIUMArticlesGenomicsCYGD[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]PROTEIN INTERACTIONSEQUENCED EUKARYOTIC GENOMEnucleic acidsCOMPREHENSIVE YEAST GENOME DATABASEBio-informatiqueGenome FungalSEQUENCE INFORMATIONSaccharomyces cerevisiae ProteinsBioinformaticsSaccharomyces cerevisiae610Saccharomyces cerevisiaeGenètica molecularSACCHAROMYCES CEREVISIAE GENOMESaccharomyces03 medical and health sciencesAnnotationGeneticsSIMAPModel organismGene030304 developmental biologyBinding Sitesved/biologyMembrane ProteinsMembrane Transport Proteinsbiology.organism_classificationYeast[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]computerSDV:BIBSTranscription Factors
researchProduct

Coupling of the guanosine glycosidic bond conformation and the ribonucleotide cleavage reaction: implications for barnase catalysis.

2007

To examine the possible relationship of guanine-dependent GpA conformations with ribonucleotide cleavage, two potential of mean force (PMF) calculations were performed in aqueous solution. In the first calculation, the guanosine glycosidic (Gχ) angle was used as the reaction coordinate, and computations were performed on two GpA ionic species: protonated (neutral) or deprotonated (negatively charged) guanosine ribose O2 ′. Similar energetic profiles featuring two minima corresponding to the anti and syn Gχ regions were obtained for both ionic forms. For both forms the anti conformation was more stable than the syn, and barriers of ∼4 kcal/mol were obtained for the anti → syn transition. Str…

chemistry.chemical_classificationRibonucleotideGuanosineStereochemistryProtein ConformationHydrolysisGuanosineGlycosidic bondRibonucleotidesBiochemistryEnzyme structureReaction coordinatechemistry.chemical_compoundDeprotonationRibonucleaseschemistryBacterial ProteinsStructural BiologyAlkane stereochemistryRiboseThermodynamicsGlycosidesMolecular BiologyProteins
researchProduct