6533b861fe1ef96bd12c59f7

RESEARCH PRODUCT

Coupling of the guanosine glycosidic bond conformation and the ribonucleotide cleavage reaction: implications for barnase catalysis.

Jesús GiraldoMaite RocaShoshana J. WodakVicent MolinerIñaki TuñónLeonardo De Maria

subject

chemistry.chemical_classificationRibonucleotideGuanosineStereochemistryProtein ConformationHydrolysisGuanosineGlycosidic bondRibonucleotidesBiochemistryEnzyme structureReaction coordinatechemistry.chemical_compoundDeprotonationRibonucleaseschemistryBacterial ProteinsStructural BiologyAlkane stereochemistryRiboseThermodynamicsGlycosidesMolecular Biology

description

To examine the possible relationship of guanine-dependent GpA conformations with ribonucleotide cleavage, two potential of mean force (PMF) calculations were performed in aqueous solution. In the first calculation, the guanosine glycosidic (Gχ) angle was used as the reaction coordinate, and computations were performed on two GpA ionic species: protonated (neutral) or deprotonated (negatively charged) guanosine ribose O2 ′. Similar energetic profiles featuring two minima corresponding to the anti and syn Gχ regions were obtained for both ionic forms. For both forms the anti conformation was more stable than the syn, and barriers of ∼4 kcal/mol were obtained for the anti → syn transition. Structural analysis showed a remarkable sensitivity of the phosphate moiety to the conformation of the Gχ angle, suggesting a possible connection between this conformation and the mechanism of ribonucleotide cleavage. This hypothesis was confirmed by the second PMF calculations, for which the O2 ′P distance for the deprotonated GpA was used as reaction coordinate. The computations were performed from two selected starting points: the anti and syn minima determined in the first PMF study of the deprotonated guanosine ribose O2′. The simulations revealed that the O2 ′ attack along the syn Gχ was more favorable than that along the anti Gχ: energetically, significantly lower barriers were obtained in the syn than in the anti conformation for the OP bond formation; structurally, a lesser O2 ′P initial distance, and a better suited orientation for an in-line attack was observed in the syn relative to the anti conformation. These results are consistent with the catalytically competent conformation of barnase–ribonucleotide complex, which requires a guanine syn conformation of the substrate to enable abstraction of the ribose H2 ′ proton by the general base Glu73, thereby suggesting a coupling between the reactive substrate conformation and enzyme structure and mechanism. Proteins 2008. © 2007 Wiley-Liss, Inc.

10.1002/prot.21573https://pubmed.ncbi.nlm.nih.gov/17680698