0000000000889882
AUTHOR
Lars Dworak
Ultrafast Charge Separation at the CdSe/CdS Core/Shell Quantum Dot/Methylviologen Interface: Implications for Nanocrystal Solar Cells
Exciton separation dynamics in the electron transfer system containing highly photostable CdSe/CdS core/shell nanocrystal quantum dots and adsorbed methylviologen was investigated by means of femtosecond absorption spectroscopy. The experiments revealed that electron extraction from the photoexcited core is possible, and the rate of the ET reaction strongly depends on the CdS shell thickness. A CdS associated exponential decay constant β of 0.33 A−1 was obtained reflecting the electronic barrier effect of the shell. These findings show that core/shell structures are well suited for the design of optimized QD-based solar cells.
Light-harvesting chlorophyll protein (LHCII) drives electron transfer in semiconductor nanocrystals
Type-II quantum dots (QDs) are capable of light-driven charge separation between their core and the shell structures; however, their light absorption is limited in the longer-wavelength range. Biological light-harvesting complex II (LHCII) efficiently absorbs in the blue and red spectral domains. Therefore, hybrid complexes of these two structures may be promising candidates for photovoltaic applications. Previous measurements had shown that LHCII bound to QD can transfer its excitation energy to the latter, as indicated by the fluorescence emissions of LHCII and QD being quenched and sensitized, respectively. In the presence of methyl viologen (MV), both fluorescence emissions are quenched…
Photodynamics at the CdSe Quantum Dot–Perylene Diimide Interface: Unraveling the Excitation Energy and Electron Transfer Pathways
Excitation energy and charge transfer processes in perylene diimide dye–CdSe quantum dot complexes have been studied by femtosecond transient absorption spectroscopy. After excitation of the quantu...
Acceptor Concentration Dependence of Förster Resonance Energy Transfer Dynamics in Dye–Quantum Dot Complexes
The dynamics of the photoinduced Forster resonance energy transfer (FRET) in a perylene diimide–quantum dot organic–inorganic hybrid system has been investigated by femtosecond time-resolved absorption spectroscopy. The bidentate binding of the dye acceptor molecules to the surface of CdSe/CdS/ZnS multishell quantum dots provides a well-defined dye-QD geometry for which the efficiency of the energy transfer reaction can be easily tuned by the acceptor concentration. In the experiments, the spectral characteristics of the chosen FRET pair facilitate a selective photoexcitation of the quantum dot donor. Moreover, the acceptor related transient absorption change that occurs solely after energy…