0000000000890102

AUTHOR

Goolia Nikravan

Rheological modifiers based on supramolecular block copolymers: From weak associations to interconnected micelles

Abstract The rheological spectra of poly(n-butyl acrylate) in the presence of a series of P(nBA-b-HEMA) rheology modifiers show a two-step relaxation process originating from the PnBA matrix and the self-assemblies. The HEMA segments are further grafted with strong, hydrogen bonding UPy groups, which both magnifies and slows down the relaxation of the assemblies. The extents of associations are enlightened by studying thermal transitions in DSC, morphological developments by SAXS, and description of rheological properties using a tube-based model. It is revealed that a weak association tendency, due to long hydrophobic blocks, leads to the formation of double-linear or star assemblies, whil…

research product

Thermal and viscoelastic properties of entangled supramolecular polymer networks as a powerful tool for prediction of their microstructure

Abstract Thermal and viscoelastic properties of entangled supramolecular polymer networks, SPNs, depend strongly on binary and collective assembly of associative groups. The collective assemblies can phase separate from polymer matrix chains and form domains with different sizes and shapes, which have different melting point transitions. By increasing content of associative groups along the polymer chains, their high-order association leads to formation of domains, which have higher melting temperatures than other ones. We prepared a SPN system that contains three networks. All networks have similar precursor polymer backbone, but different content of ureidopyrimidinone, UPy, moiety as stro…

research product