Some properties of [tr(Q2p)]12p with application to linear minimax estimation
Abstract A nondifferentiable minimization problem is considered which occurs in linear minimax estimation. This problem is solved by replacing the nondifferentiable maximal eigenvalue of a real nonnegative definite matrix Q with [tr( Q 2 p )] 1/2 p . It is shown that any descent algorithm with inexact step-length rule can be used to obtain linear minimax estimators for the parameter vector of a parameter-restricted linear model.