0000000000890612

AUTHOR

Carles Bona

Intrinsic characterization of space‐time symmetric tensors

This paper essentially deals with the classification of a symmetric tensor on a four‐dimensional Lorentzian space. A method is given to find the algebraic type of such a tensor. A system of concomitants of the tensor is constructed, which allows one to know the causal character of the eigenspace corresponding to a given eigenvalue, and to obtain covariantly their eigenvectors. Some algebraic as well as differential applications are considered.

research product

The role of the ergosphere in the Blandford-Znajek process

The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

research product

Almost-Killing conserved currents: A general mass function

A new class of conserved currents, describing non-gravitational energy-momentum density, is presented. The proposed currents do not require the existence of a (timelike) Killing vector, and are not restricted to spherically symmetric spacetimes (or similar ones, in which the Kodama vector can be defined). They are based instead on almost-Killing vectors, which could in principle be defined on generic spacetimes. We provide local arguments, based on energy density profiles in highly simplified (stationary, rigidly-rotating) star models, which confirm the physical interest of these 'almost-Killing currents'. A mass function is defined in this way for the spherical case, qualitatively differen…

research product

The role of the ergosphere in the Blandford-Znajek process

The Blandford-Znajek process, one of the most promising model for powering the relativistic jets from black holes, was initially introduced as a mechanism in which the magnetic fields extract energy from a rotating black hole. We study the evolution of force-free electromagnetic fields on regular spacetimes with an ergosphere, which are generated by rapidly rotating stars. Our conclusive results confirm previous works, claiming that the Blandford-Znajek mechanism is not directly related to the horizon of the black hole. We also show that the radiated energy depends exponentially on the compactness of the star.

research product