0000000000892319
AUTHOR
Eleonora Calcagno
Selective activation of 5-HT(2C) receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study.
In vivo electrophysiology and microdialysis were used to investigate the physiological role of 5-HT(2C) receptors in the control of substantia nigra pars reticulata (SNr) function. Extracellular single-unit recordings were performed from putative GABA-containing neurons in the SNr of anesthetized rats, and local GABA release was studied by in vivo microdialysis in the SNr of awake freely-moving rats. Systemic administration of the selective 5-HT(2C) receptor agonist (S)-2-(chloro-5-fluoro-indol-1-yl)-1-methylethylamine 1:1 C(4)H(4)O(4) (RO 60-0175) caused a dose-dependent excitation of about 30% of the SNr neurons recorded. However, the remaining neurons were either inhibited or unaffected …
Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: Implications for seizure susceptibility.
Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine acting on two distinct receptor subtypes, namely p55 and p75 receptors. TNF-alpha p55 and p75 receptor knockout mice were previously shown to display a decreased or enhanced susceptibility to seizures, respectively, suggesting intrinsic modifications in neuronal excitability. We investigated whether alterations in glutamate system function occur in these naive knockout mice with perturbed cytokine signaling that could explain their different propensity to develop seizures. Using Western blot analysis of hippocampal homogenates, we found that p55(-/-) mice have decreased levels of membrane GluR3 and NR1 glutamate receptor subuni…