0000000000894076
AUTHOR
Ioannis Antoniou
Quantum systems with fractal spectra
Abstract We study Hamiltonians with singular spectra of Cantor type with a constant ratio of dissection and show strict connections between the decay properties of the states in the singular subspace and the algebraic number theory. More specifically, we study the decay properties of free n-particle systems and the computability of decaying and non-decaying states in the singular continuous subspace.
Time operators, innovations and approximations
Abstract We present a new approach to the spectral analysis and prediction of such complex systems for which the time evolution is described by a semigroup of operators. This approach is based on an extended concept of time operator and can be interpreted as a shift representation of dynamical systems. The time operator method includes the multiresolution analysis of wavelets as a particular case but can also be applied for a substantially larger class of dynamical systems. Among the examples where shift representation have been explicitly derived are exact endomorphisms, the diffusion equation, generalized shifts associated with the Haar or Faber–Schauder basis and some classes of stochast…
On Computability of Decaying and Nondecaying States in Quantum Systems with Cantor Spectra
We study Hamiltonians with singular spectra of Cantor type with a constant ratio of dissection. The decay properties of the states in such systems depend on the nature of the dissection rate that can be characterized in terms of the algebraic number theory. We show that in spite of simplicity of the considered model the computational modeling of nondecaying states is in general impossible.
Harmonic Analysis of Unstable Systems
Analysis of resources distribution in economics based on entropy
We propose a new approach to the problem of e0cient resources distribution in di1erent types of economic systems. We also propose to use entropy as an indicator of the e0ciency of resources distribution. Our approach is based on methods of statistical physics in which the states of economic systems are described in terms of the density functions � (g; � ) of the variable — — — — � �