X-RAY PHOTOEMISSION ELECTRON MICROSCOPE DETERMINATION OF ORIGINS OF ROOM TEMPERATURE FERROMAGNETISM AND PHOTOLUMINESCENCE IN HIGHCo-CONTENTCoxZn1-xOFILMS
In this paper, we reported on the X-ray photoemission electron microscope (XPEEM) determination of magnetic and luminescence origins for two CoxZn1-xO films. The cobalt fraction x of radio frequency co-sputtered samples were 0.86(2) and 0.92(2), respectively. Films were ferromagnetic and semiconductive. Unique narrow green color lines beside the ZnO intrinsic emissions were found with a decay time in microsecond range at room temperature. Origins of magnetic and luminescence properties were determined with XPEEM. The X-ray absorption near edge structure at the Co L3-edge denoted that Co was partially oxidized, and phase-contrast images together with chemical composition identification furt…
The combination of chemotherapy and radiotherapy towards more efficient drug delivery.
Research on anticancer therapies has advanced significantly in recent years. New therapeutic platforms that can further improve the health of patients are still highly demanded. We propose the idea of combining regular chemotherapy with radiation therapy to minimize side effects as well as increase drug-delivery efficiency. In this Focus Review, we seek to provide an overview of recent advances that can combine chemotherapy and radiotherapy. We begin by reviewing the current state of systems that can combine chemotherapy and gamma radiation. Among them, diselenide-containing polymers are highlighted as sensitive drug-delivery vehicles that can disassemble under gamma radiation. Then X-ray r…
Luminescence and vacuum ultraviolet excitation spectroscopy of samarium doped SrB4O7
Abstract Sm2+ and Sm3+ co-doped SrB4O7 could be utilized in several high-level optical devices and fundamental knowledge about the optical behavior of these materials benefits the development of luminescent applications. Herein, we report luminescence and its vacuum ultraviolet (VUV) excitation spectra in samarium doped SrB4O7. Both, Sm2+ and Sm3+ luminescence centers have been examined and distinguished in the emission and the excitation spectra investigated under synchrotron radiation. The contribution of either Sm2+ or Sm3+ emission lines into the emission spectra heavily depended on the excitation energy, and strong f-f transitions of both Sm2+ and Sm3+ were detected. At 10 K, a broad i…