The ATAL within the 2017 Asian Monsoon Anticyclone: Microphysical aerosol properties derived from aircraft-borne in situ measurements
Abstract. The Asian summer monsoon is an effective pathway for aerosol particles and precursor substances from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA) has been observed by satellites, called the Asian Tropopause Aerosol Layer (ATAL). In this paper we discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the region of the Asian monsoon anticyclone. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (reac…
Long-lived contrails and convective cirrus above the tropical tropopause
Abstract. This study has two objectives: (1) it characterizes contrails at very low temperatures and (2) it discusses convective cirrus in which the contrails occurred. (1) Long-lived contrails and cirrus from overshooting convection are investigated above the tropical tropopause at low temperatures down to −88 °C from measurements with the Russian high-altitude research aircraft M-55 Geophysica, as well as related observations during the SCOUT-O3 field experiment near Darwin, Australia, in 2005. A contrail was observed to persist below ice saturation at low temperatures and low turbulence in the stratosphere for nearly 1 h. The contrail occurred downwind of the decaying convective system H…
In situ measurements of background aerosol and subvisible cirrus in the tropical tropopause region
[1] In situ aerosol measurements were performed in the Indian Ocean Intertropical Convergence Zone (ITCZ) region during the Airborne Polar Experiment-Third European Stratospheric Experiment on Ozone (APE-THESEO) field campaign based in Mahe, Seychelles between 24 February and 6 March 1999. These are measurements of particle size distributions with a laser optical particle counter of the Forward Scattering Spectrometer Probe (FSSP)-300 type operated on the Russian M-55 high-altitude research aircraft Geophysica in the tropical upper troposphere and lower stratosphere up to altitudes of 21 km. On 24 and 27 February 1999, ultrathin layers of cirrus clouds were penetrated by Geophysica directly…
The Asian tropopause aerosol layer within the 2017 monsoon anticyclone: microphysical properties derived from aircraft-borne in situ measurements
The Asian summer monsoon is an effective pathway for aerosol particles and precursors from the planetary boundary layer over Central, South, and East Asia into the upper troposphere and lower stratosphere. An enhancement of aerosol particles within the Asian monsoon anticyclone (AMA), called the Asian tropopause aerosol layer (ATAL), has been observed by satellites. We discuss airborne in situ and remote sensing observations of aerosol microphysical properties conducted during the 2017 StratoClim field campaign within the AMA region. The aerosol particle measurements aboard the high-altitude research aircraft M55 Geophysica (maximum altitude reached of ∼20.5 km) were conducted with a modifi…
Unprecedented evidence for deep convection hydrating the tropical stratosphere
[1] We report on in situ and remote sensing measurements of ice particles in the tropical stratosphere found during the Geophysica campaigns TROCCINOX and SCOUT-O3. We show that the deep convective systems penetrated the stratosphere and deposited ice particles at altitudes reaching 420 K potential temperature. These convective events had a hydrating effect on the lower tropical stratosphere due to evaporation of the ice particles. In contrast, there were no signs of convectively induced dehydration in the stratosphere.