0000000000894370

AUTHOR

Quentin Brabant

showing 1 related works from this author

Preventing Overlaps in Agglomerative Hierarchical Conceptual Clustering

2020

Hierarchical Clustering is an unsupervised learning task, whi-ch seeks to build a set of clusters ordered by the inclusion relation. It is usually assumed that the result is a tree-like structure with no overlapping clusters, i.e., where clusters are either disjoint or nested. In Hierarchical Conceptual Clustering (HCC), each cluster is provided with a conceptual description which belongs to a predefined set called the pattern language. Depending on the application domain, the elements in the pattern language can be of different nature: logical formulas, graphs, tests on the attributes, etc. In this paper, we tackle the issue of overlapping concepts in the agglomerative approach of HCC. We …

Structure (mathematical logic)Theoretical computer scienceComputer scienceConceptual clustering02 engineering and technologyDisjoint setsHierarchical clusteringSet (abstract data type)Pattern language (formal languages)ComputingMethodologies_PATTERNRECOGNITIONApplication domain020204 information systems0202 electrical engineering electronic engineering information engineeringUnsupervised learning020201 artificial intelligence & image processing
researchProduct