0000000000894513

AUTHOR

J. Kuhn

showing 4 related works from this author

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

2009

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

Physics010308 nuclear & particles physicsScatteringNuclear TheoryGeneral Physics and AstronomyScintillator7. Clean energy01 natural sciencesNuclear physicsDipoleDeuterium0103 physical sciencesMagnetic form factorNeutron detectionHigh Energy Physics::ExperimentNeutronNuclear Experiment010306 general physicsElectron scatteringPhysical Review Letters
researchProduct

First observations of Pontecorvo reactions with a recoiling neutron

1995

We report the first observations of Pontecorvo reactions of the type ¯pd →Xn. We fully reconstruct the outgoing meson and, for antiprotons stopped in liquid deuterium, we measure: BR(¯pd→π0)=(7.03±0.72)×10−6, BR(¯pd→ηn)=(3.19+0.48)×10−6, BR(¯pd→ωn)=(22.8+4.1)×10−6, BR(¯pd→η′n)14×10−6 (at 95% confidence level). Assuming charge independence, our result for¯ pd→π0n is compatible with measurements of the only other observed Pontecorvo reaction ¯pd → π−p. The experimental ratios between the above branching ratios are in fair agreement with both the statistical model and dynamical two-step models (assumingN¯ N annihilation into two mesons, with subsequent absorption of one meson on the remaining …

PhysicsNuclear physicsNuclear and High Energy PhysicsParticle physicsAnnihilationDeuteriumMesonAntiprotonNuclear fusionNeutronNucleonZeitschrift für Physik A Hadrons and Nuclei
researchProduct

Chemical variability in volcanic gas plumes and fumaroles along the East African Rift System: New insights from the Western Branch

2022

The origin of magmatic fluids along the East African Rift System (EARS) is a long-lived field of debate in the scientific community. Here, we investigate the chemical composition of the volcanic gas plume and fumaroles at Nyiragongo and Nyamulagira (Democratic Republic of Congo), the only two currently erupting volcanoes set on the Western Branch of the rift. Our results are in line with earlier conceptual models proposing that volcanic gas emissions along the EARS mainly reflect variable contributions of either a Sub-Continental Lithospheric Mantle (SCLM) component or a Depleted Morb Mantle (DMM) component, and deeper fluid. At Nyiragongo and Nyamulagira, our study discards a major contrib…

Geochemistry and PetrologyEast African Rift System Volcano Gas chemistryGas chemistryGeologyEast African Rift SystemVolcano
researchProduct

Etna International Training School of Geochemistry. Science meets Practice

2019

Also this year, the “Etna International Training School of Geochemistry. Science meets practice” took place at Mt. Etna, now in its fourth edition. The school was hosted in the historical Volcanological Observatory “Pizzi Deneri”, one of the most important sites of the INGV - Osservatorio Etneo for geochemical and geophysical monitoring. Mount Etna, located in eastern Sicily, is the largest active volcano in Europe and one of the most intensely degassing volcanoes of the world [Allard et al., 1991; Gerlach, 1991]. Mt Etna emits about 1.6 % of global H2O fluxes from arc volcanism [Aiuppa et al., 2008] and 10 % of global average volcanic emission of CO2 and SO2 [D’Alessandro et al., 1997; Cal…

Mt. Etna Geochemistry Volcanology Remote SensingSettore GEO/08 - Geochimica E Vulcanologia
researchProduct