0000000000895139

AUTHOR

E. Kalinowski

showing 2 related works from this author

Ground state of the frustrated Hubbard model within DMFT: energetics of Mott insulator and metal from ePT and QMC

2004

We present a new method, ePT, for extrapolating few known coefficients of a perturbative expansion. Controlled by comparisons with numerically exact quantum Monte Carlo (QMC) results, 10th order strong-coupling perturbation theory (PT) for the Hubbard model on the Bethe lattice is reliably extrapolated to infinite order. Within dynamical mean-field theory (DMFT), we obtain continuous estimates of energy E and double occupancy D with unprecedented precision O(10^{-5}) for the Mott insulator above its stability edge U_{c1}=4.78 as well as critical exponents. In addition, we derive corresponding precise estimates for E and D in the metallic ground state from extensive low-temperature QMC simul…

PhysicsCondensed Matter::Quantum GasesHubbard modelBethe latticeCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)Quantum Monte CarloMott insulatorFOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMott transitionCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Strongly Correlated ElectronsElectrical and Electronic EngineeringGround stateCritical exponentLattice model (physics)
researchProduct

Mott insulator: Tenth-order perturbation theory extended to infinite order using a quantum Monte Carlo scheme

2005

We present a method based on the combination of analytical and numerical techniques within the framework of the dynamical mean-field theory. Building upon numerically exact results obtained in an improved quantum Monte Carlo scheme, tenth-order strong-coupling perturbation theory for the Hubbard model on the Bethe lattice is extrapolated to infinite order. We obtain continuous estimates of energy $E$ and double occupancy $D$ with unprecedented precision $\mathcal{O}({10}^{\ensuremath{-}5})$ for the Mott insulator above its stability edge ${U}_{c1}\ensuremath{\approx}4.78$ as well as critical exponents. The relevance for recent experiments on Cr-doped ${\mathrm{V}}_{2}{\mathrm{O}}_{3}$ is po…

PhysicsBethe latticeHubbard modelMean field theoryQuantum mechanicsQuantum Monte CarloMott insulatorOrder (ring theory)Condensed Matter PhysicsCritical exponentEnergy (signal processing)Electronic Optical and Magnetic MaterialsPhysical Review B
researchProduct