6533b855fe1ef96bd12b1137
RESEARCH PRODUCT
Mott insulator: Tenth-order perturbation theory extended to infinite order using a quantum Monte Carlo scheme
E. KalinowskiN. Blümersubject
PhysicsBethe latticeHubbard modelMean field theoryQuantum mechanicsQuantum Monte CarloMott insulatorOrder (ring theory)Condensed Matter PhysicsCritical exponentEnergy (signal processing)Electronic Optical and Magnetic Materialsdescription
We present a method based on the combination of analytical and numerical techniques within the framework of the dynamical mean-field theory. Building upon numerically exact results obtained in an improved quantum Monte Carlo scheme, tenth-order strong-coupling perturbation theory for the Hubbard model on the Bethe lattice is extrapolated to infinite order. We obtain continuous estimates of energy $E$ and double occupancy $D$ with unprecedented precision $\mathcal{O}({10}^{\ensuremath{-}5})$ for the Mott insulator above its stability edge ${U}_{c1}\ensuremath{\approx}4.78$ as well as critical exponents. The relevance for recent experiments on Cr-doped ${\mathrm{V}}_{2}{\mathrm{O}}_{3}$ is pointed out.
year | journal | country | edition | language |
---|---|---|---|---|
2005-05-04 | Physical Review B |