6533b855fe1ef96bd12b1137

RESEARCH PRODUCT

Mott insulator: Tenth-order perturbation theory extended to infinite order using a quantum Monte Carlo scheme

E. KalinowskiN. Blümer

subject

PhysicsBethe latticeHubbard modelMean field theoryQuantum mechanicsQuantum Monte CarloMott insulatorOrder (ring theory)Condensed Matter PhysicsCritical exponentEnergy (signal processing)Electronic Optical and Magnetic Materials

description

We present a method based on the combination of analytical and numerical techniques within the framework of the dynamical mean-field theory. Building upon numerically exact results obtained in an improved quantum Monte Carlo scheme, tenth-order strong-coupling perturbation theory for the Hubbard model on the Bethe lattice is extrapolated to infinite order. We obtain continuous estimates of energy $E$ and double occupancy $D$ with unprecedented precision $\mathcal{O}({10}^{\ensuremath{-}5})$ for the Mott insulator above its stability edge ${U}_{c1}\ensuremath{\approx}4.78$ as well as critical exponents. The relevance for recent experiments on Cr-doped ${\mathrm{V}}_{2}{\mathrm{O}}_{3}$ is pointed out.

https://doi.org/10.1103/physrevb.71.195102