0000000000895293
AUTHOR
Maris Valdats
On the class of languages recognizable by 1-way quantum finite automata
It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.
On the Class of Languages Recognizable by 1-Way Quantum Finite Automata
It is an open problem to characterize the class of languages recognized by quantum finite automata (QFA). We examine some necessary and some sufficient conditions for a (regular) language to be recognizable by a QFA. For a subclass of regular languages we get a condition which is necessary and sufficient. Also, we prove that the class of languages recognizable by a QFA is not closed under union or any other binary Boolean operation where both arguments are significant.
The class of languages recognizable by 1-way quantum finite automata is not closed under union
In this paper we develop little further the theory of quantum finite automata (QFA). There are already few properties of QFA known, that deterministic and probabilistic finite automata do not have e.g. they cannot recognize all regular languages. In this paper we show, that class of languages recognizable by QFA is not closed under union, even not under any Boolean operation, where both arguments are significant.
Transition Function Complexity of Finite Automata
State complexity of finite automata in some cases gives the same complexity value for automata which intuitively seem to have completely different complexities. In this paper we consider a new measure of descriptional complexity of finite automata -- BC-complexity. Comparison of it with the state complexity is carried out here as well as some interesting minimization properties are discussed. It is shown that minimization of the number of states can lead to a superpolynomial increase of BC-complexity.
Transition Function Complexity of Finite Automata
State complexity of finite automata in some cases gives the same complexity value for automata which intuitively seem to have completely different complexities. In this paper we consider a new measure of descriptional complexity of finite automata -- BC-complexity. Comparison of it with the state complexity is carried out here as well as some interesting minimization properties are discussed. It is shown that minimization of the number of states can lead to a superpolynomial increase of BC-complexity.