0000000000897273
AUTHOR
T. Bernadin
Low-Power consumption Franz-Keldysh effect plasmonic modulator
In this paper we report on a low energy consumption CMOS-compatible plasmonic modulator based on Franz-Keldysh effect in germanium on silicon. We performed integrated electro-optical simulations in order to optimize the main characteristics of the modulator. A 3.3 $dB$ extinction ratio for a 30 ${\mu}m$ long modulator is demonstrated under 3 $V$ bias voltage at an operation wavelength of 1647 $nm$. The estimated energy consumption is as low as 20 $fJ/bit$.
A CMOS-compatible Franz-Keldysh effect plasmonic modulator
We present a design of an optimized CMOS-compatible germanium-on-silicon Franz-Keldysh effect plasmonic modulator. Its length is below 30 μm and the modulator operates at −3V. It features a power consumption as low as 20 fJ/bit.