Theoretical analysis of hole self-trapping in ionic solids: Application to the KCl crystal.
A method for the calculation of the hole self-trapping (ST) energy in ionic crystals is proposed. It combines model-Hamiltonian and quantum-chemical approaches. An artificial path for the ST process has been suggested containing (a) a free hole not interacting with the lattice vibrations; (b) a free-hole wave packet localized in a small crystal volume in the form of the real ST state, all crystal ions being in their perfect lattice positions; (c) the final ST state of the hole, accompanied with a corresponding lattice relaxation, including strong displacements of ions belonging to the hole region. Some intermediate states might be adopted between (a) and (b) in order to simplify the calcula…