Fluorescence of rubidium in a submicrometer vapor cell: spectral resolution of atomic transitions between Zeeman sublevels in a moderate magnetic field
It is experimentally demonstrated that use of an extremely thin cell (ETC) with the thickness of a Rb atomic vapor column of ∼400 nm allows one to resolve a large number of individual transitions between Zeeman sublevels of the D1 line of 87Rb and 85Rb in the sub-Doppler fluorescence excitation spectra in an external magnetic field of ∼200 G. It is revealed that due to the peculiarities of the Zeeman effect for different hyperfine levels of Rb, all allowed transitions between magnetic sublevels can be clearly resolved for 87RbF_g = 1 --> F_e = 1, 2 and F_g = 2 --> F_e = 1, 2 fluorescence excitation. Also, relatively good spectral resolution can be achieved for 85RbF_g = 2 --> F_e = 2, 3 flu…