0000000000901602
AUTHOR
Jeronimo Arenas-garcia
Semisupervised kernel orthonormalized partial least squares
This paper presents a semisupervised kernel orthonormalized partial least squares (SS-KOPLS) algorithm for non-linear feature extraction. The proposed method finds projections that minimize the least squares regression error in Hilbert spaces and incorporates the wealth of unlabeled information to deal with small size labeled datasets. The method relies on combining a standard RBF kernel using labeled information, and a generative kernel learned by clustering all available data. The positive definiteness of the kernels is proven, and the structure and information content of the derived kernels is studied. The effectiveness of the proposed method is successfully illustrated in standard UCI d…
Feature extraction from remote sensing data using Kernel Orthonormalized PLS
This paper presents the study of a sparse kernel-based method for non-linear feature extraction in the context of remote sensing classification and regression problems. The so-called kernel orthonormalized PLS algorithm with reduced complexity (rKOPLS) has two core parts: (i) a kernel version of OPLS (called KOPLS), and (ii) a sparse (reduced) approximation for large scale data sets, which ultimately leads to rKOPLS. The method demonstrates good capabilities in terms of expressive power of the extracted features and scalability.