0000000000902572

AUTHOR

Mikko Huhtala

0000-0001-6070-7604

Structural and functional analysis of integrin alpha2I domain interaction with echovirus 1.

Integrins are cell surface receptors for several microbial pathogens including echovirus 1 (EV1), a picornavirus. Cryo-electron microscopy revealed that the functional domain (alpha(2)I) of human alpha(2)beta(1) integrin binds to a surface depression on the EV1 capsid. This three-dimensional structure of EV1 bound to alpha(2)I domain provides the first structural details of an integrin interacting with a picornavirus. The model indicates that alpha(2)beta(1) integrin cannot simultaneously bind both EV1 and the physiological ligand collagen. Compared with collagen binding to the alpha(2)I domain, the virus binds with a 10-fold higher affinity but in vitro uncoating of EV1 was not observed as…

research product

Molecular mechanism of α2β1 integrin interaction with human echovirus 1

Conformational activation increases the affinity of integrins to their ligands. On ligand binding, further changes in integrin conformation elicit cellular signalling. Unlike any of the natural ligands of alpha2beta1 integrin, human echovirus 1 (EV1) seemed to bind more avidly a 'closed' than an activated 'open' form of the alpha2I domain. Furthermore, a mutation E336A in the alpha2 subunit, which inactivated alpha2beta1 as a collagen receptor, enhanced alpha2beta1 binding to EV1. Thus, EV1 seems to recognize an inactive integrin, and not even the virus binding could trigger the conformational activation of alpha2beta1. This was supported by the fact that the integrin clustering by EV1 did …

research product