0000000000906114

AUTHOR

Natalie Spang

Novel Modulators of Proteostasis: RNAi Screen of Chromosome I in a Heat Stress Paradigm in C. elegans

Proteostasis is of vital importance for cellular function and it is challenged upon exposure to acute or chronic insults during neurodegeneration and aging. The proteostasis network is relevant for the maintenance of proteome integrity and mainly comprises molecular chaperones and two degradation pathways, namely, autophagy and the ubiquitin proteasome system. This network is characterized by an impressive functional interrelation and complexity, and occasionally novel factors are discovered that modulate proteostasis. Here, we present an RNAi screen in C. elegans, which aimed to identify modulators of proteostasis in a heat stress paradigm. The screen comprised genes that are located on ch…

research product

RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy

Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…

research product

RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy

Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase-activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…

research product