0000000000907359

AUTHOR

Philip Power

Isolation of a Stable, Acyclic, Two-Coordinate Silylene

The synthesis and characterization of a stable, acyclic two-coordinate silylene, Si(SArMe6)2, (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2) by reduction of Br2Si(SArMe6)2 with a magnesium(I) reductant is described. It features a v-shaped silicon coordination with a S-Si-S angle of 90.519(2)° and an average Si-S distance of 2.158(3) Å. Although it reacts readily with an alkyl halide, it does not react with hydrogen under ambient conditions probably as a result of the ca. 4.3 eV energy difference between the frontier silicon lone pair and 3p orbitals. peerReviewed

research product

Computational Analysis of n→π* Back-Bonding in Metallylene-Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)

A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …

research product

A Germanium Isocyanide Complex Featuring (n → π*) Back-Bonding and Its Conversion to a Hydride/Cyanide Product via C-H Bond Activation under Mild Conditions

Reaction of the diarylgermylene Ge(ArMe6)2 [ArMe6 = C6H3-2,6-(C6H2-2,4,6-(CH3)3)2] with tert-butyl isocyanide gave the Lewis adduct species (ArMe6)2GeCNBut, in which the isocyanide ligand displays a decreased C–N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge–C bonding combination between the lone pair of electrons on the germanium atom and the C–N π* orbital of the isocyanide ligand. The complex undergoes facile C–H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N–But bond. peerReviewed

research product

Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues

The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…

research product

Mechanistic Study of Stepwise Methylisocyanide Coupling and C-H Activation Mediated by a Low-Valent Main Group Molecule

An experimental and DFT investigation of the mechanism of the coupling of methylisocyanide and C–H activation mediated by the germylene (germanediyl) Ge(ArMe6)2 (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2) showed that it proceeded by initial MeNC adduct formation followed by an isomerization involving the migratory insertion of the MeNC carbon into the Ge–C ligand bond. Addition of excess MeNC led to sequential insertions of two further MeNC molecules into the Ge–C bond. The insertion of the third MeNC leads to methylisocyanide methyl group C–H activation to afford an azagermacyclopentadienyl species. The X-ray crystal structures of the 1:1 (ArMe6)2GeCNMe adduct, the first and final insertion produc…

research product

Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-90° Interligand Bond Angles

The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features—the most notable of which is their strong tendency to display acute interligand, Ch–M–Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, in…

research product

Nature of Bonding in Group 13 Dimetallenes: a Delicate Balance between Singlet Diradical Character and Closed Shell Interactions

The nature of metal−metal bonding in group 13 dimetallenes REER (E = Al, Ga, In, Tl; R = H, Me, tBu, Ph) was investigated by use of quantum chemical methods that include HF, second order Møller−Plesset perturbation theory (MP2), coupled cluster (CCSD(T)), complete active space with (CASPT2) and without (CAS) second order perturbation theory, and two density functionals, namely, B3LYP and M06-2X. The results show that the metal−metal interaction in group 13 dimetallenes stems almost exclusively from static and dynamic electron correlation effects: both dialuminenes and digallenes have an important singlet diradical component in their wave function, whereas the bonding in the heavier diindene…

research product