0000000000909465
AUTHOR
A. Mokhberi
Rydberg Series Excitation of a Single Trapped Ca+40 Ion for Precision Measurements and Principal Quantum Number Scalings
A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for $n{S}_{1/2}$ states with $38\ensuremath{\le}n\ensuremath{\le}65$ and for $n{D}_{5/2}$ states with $37\ensuremath{\le}n\ensuremath{\le}50$ on a single trapped $^{40}{\mathrm{Ca}}^{+}$ ion. We determined the ionization energy of 2 870 575.582(15) GHz, 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of ${\ensuremath{\delta}}_{{S}_{1/2}}=1.802\text{ }995(5)$ and ${\ensuremath{\delta}}_{{D}_{5/2}}=0.626\text{ }888(9)$ for $n{S}_…
Shuttling of Rydberg ions for fast entangling operations
We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser-initialization of ions to a superposition of ground- and Rydberg-state, the entanglement operation is driven purely by applying a voltage pulse that shuttles the ion crystal back and forth. This operation can achieve entanglement on a sub-$\mu$s timescale, more than two orders of magnitude faster than typical gate operations driven by continuous-wave lasers. Our analysis shows that the fidelity achieved with this protocol can exceed $99.9\%$ with…