0000000000909760

AUTHOR

K. Wimmer

Decay studies in the A∼225 Po-Fr region from the DESPEC campaign at GSI in 2021

The HISPEC-DESPEC collaboration aims at investigating the struc-ture of exotic nuclei formed in fragmentation reactions with decay spectroscopymeasurements, as part of the FAIR Phase-0 campaign at GSI. This paper reportson first results of an experiment performed in spring 2021, with a focus on beta-decaystudies in the Po-Fr nuclei in the 220 < A <230 island of octupole deformationexploiting the DESPEC setup. Ion-beta correlations and fast-timing techniques arebeing employed, giving an insight into this difficult-to-reach region. peerReviewed

research product

Microscopic structure of coexisting $0^+$ states in $^{68}$Ni probed via two-neutron transfer

© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The structure of low-spin states originating from shape-coexisting configurations in Ni284068 was directly probed via the two-neutron transfer reaction Ni66(t,p)Ni68 in inverse kinematics using a radioactive ion beam on a radioactive target. The direct feeding to the first excited 0+ state was measured for center-of-mass angles 4-16 and amounts to an integral of 4.2(16)% rela…

research product

Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79

5 pags., 6 figs.

research product

Measurement of key resonance states for the P30(p,γ)S31 reaction rate, and the production of intermediate-mass elements in nova explosions

We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P30(p,γ)S31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P30(d,n)S31 reaction was studied in inverse kinematics using the GRETINA γ -ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicat…

research product

Evolution of collectivity in the78Ni region: Coulomb excitation of74Ni at intermediate energies.

The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic ob- servables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the ef- fective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope ( 64 Ni) towards the 78 Ni nucleus where the large neu…

research product

Spectroscopy of Cd98 by two-nucleon removal from In100

Low-lying states of Cd-98 have been populated by the two-nucleon removal reaction (In-100, Cd-98+gamma) and studied using in-beam gamma-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new gamma transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a pi 1g(/9/2)(-1)2p(1/2)(-2) configuration with J(pi) = 5(-). The present observation extends the systematics of the excitation energies of the first 5(-) state in N = 50 isotones toward Sn-100. The determined energy of the 5(- )state in Cd-98 continues a smooth trend along the N = 50 isotones. The systematics are compared with shell-model calculations in d…

research product

Spectroscopy of $^{46}$Ar by the (t,p) two-neutron transfer reaction

States in the $N=28$ nucleus $^{46}$Ar have been studied by a two-neutron transfer reaction at REX-ISOLDE (CERN). A beam of radioactive $^{44}$ at an energy of 2.16~AMeV and a tritium loaded titanium target were used to populate $^{46}$ by the t($^{44}$,p) two-neutron transfer reaction. Protons emitted from the target were identified in the T-REX silicon detector array. The excitation energies of states in $^{46}$ have been reconstructed from the measured angles and energies of recoil protons. Angular distributions for three final states were measured and based on the shape of the differential cross section an excited state at 3695~keV has been identified as $J^\pi = 0^+$. The angular diffe…

research product

Fast-timing Measurement in \(^{96}\)Pd: Improved Accuracy for the Lifetime of the \(4_1^{+}\) State

Direct lifetime measurements via γ–γ coincidences using the FATIMA fast-timing LaBr3(Ce) array were performed for the excited states below previously reported isomers. In the N = 50 semi-magic 96Pd nucleus, lifetimes below the I π = 8+ seniority isomer were addressed as a benchmark for further analysis. The results for the I π = 2+ and 4 + states confirm the published values. Increased accuracy for the lifetime value was achieved for the 4 + state. peerReviewed

research product