0000000000909764
AUTHOR
J. Diriken
Shape coexistence in the neutron-deficient even-even Hg182-188 isotopes studied via Coulomb excitation
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0+ states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0+ state was noted in Hg182,184. The results are compared to beyond mean field and interacting-boson based models and interp…
Microscopic structure of coexisting $0^+$ states in $^{68}$Ni probed via two-neutron transfer
© 2019 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. The structure of low-spin states originating from shape-coexisting configurations in Ni284068 was directly probed via the two-neutron transfer reaction Ni66(t,p)Ni68 in inverse kinematics using a radioactive ion beam on a radioactive target. The direct feeding to the first excited 0+ state was measured for center-of-mass angles 4-16 and amounts to an integral of 4.2(16)% rela…
Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79
5 pags., 6 figs.
Shape Coexistence in the Neutron-Deficient Even-EvenHg182−188Isotopes Studied via Coulomb Excitation
Coulomb-excitation experiments to study electromagnetic properties of radioactive even-even Hg isotopes were performed with 2.85 MeV/nucleon mercury beams from REX-ISOLDE. Magnitudes and relative signs of the reduced E2 matrix elements that couple the ground state and low-lying excited states in Hg182-188 were extracted. Information on the deformation of the ground and the first excited 0(+) states was deduced using the quadrupole sum rules approach. Results show that the ground state is slightly deformed and of oblate nature, while a larger deformation for the excited 0(+) state was noted in Hg-182; 184. The results are compared to beyond mean field and interacting-boson based models and i…
Spectroscopy of $^{46}$Ar by the (t,p) two-neutron transfer reaction
States in the $N=28$ nucleus $^{46}$Ar have been studied by a two-neutron transfer reaction at REX-ISOLDE (CERN). A beam of radioactive $^{44}$ at an energy of 2.16~AMeV and a tritium loaded titanium target were used to populate $^{46}$ by the t($^{44}$,p) two-neutron transfer reaction. Protons emitted from the target were identified in the T-REX silicon detector array. The excitation energies of states in $^{46}$ have been reconstructed from the measured angles and energies of recoil protons. Angular distributions for three final states were measured and based on the shape of the differential cross section an excited state at 3695~keV has been identified as $J^\pi = 0^+$. The angular diffe…
97/37 Rb 60 : The Cornerstone of the Region of Deformation around A∼100
Excited states of the neutron-rich nuclei 97,99Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of 97Rb as being built on the πg9/2 [431] 3/2+ Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of 97Rb is essentially the same as that observed well inside the deformed regi…
Shapes and Collectivity in Neutron Deficient Even-Mass 188–198Pb Isotopes
The neutron deficient 188−198Pb isotopes have been studied in a Coulomb excitation measurement employing the Miniball spectrometer and radioactive beams from REX-ISOLDE, CERN. These isotopes are of particular importance as they lie in a transitional region, where the intruding structures, associated with different deformed shapes, come down in energy close to the spherical ground state. For detailed analysis of the Coulomb excitation data, the understanding of the beam composition is essential. peerReviewed