0000000000910327

AUTHOR

Ludovico Lami

Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint

Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…

research product

Indistinguishability-enabled coherence for quantum metrology

Quantum coherence plays a fundamental and operational role in different areas of physics. A resource theory has been developed to characterize the coherence of distinguishable particles systems. Here we show that indistinguishability of identical particles is a source of coherence, even when they are independently prepared. In particular, under spatially local operations, states that are incoherent for distinguishable particles, can be coherent for indistinguishable particles under the same procedure. We present a phase discrimination protocol, in which we demonstrate the operational advantage of using two indistinguishable particles rather than distinguishable ones. The coherence due to th…

research product