0000000000914807

AUTHOR

Arun K. Sagotra

showing 2 related works from this author

Mechanocaloric effects in superionic thin films from atomistic simulations

2017

Solid-state cooling is an energy-efficient and scalable refrigeration technology that exploits the adiabatic variation of a crystalline order parameter under an external field (electric, magnetic, or mechanic). The mechanocaloric effect bears one of the greatest cooling potentials in terms of energy efficiency owing to its large available latent heat. Here we show that giant mechanocaloric effects occur in thin films of well-known families of fast-ion conductors, namely Li-rich (Li3OCl) and type-I (AgI), an abundant class of materials that routinely are employed in electrochemistry cells. Our simulations reveal that at room temperature AgI undergoes an adiabatic temperature shift of 38 K un…

Materials scienceScienceGeneral Physics and AstronomyIonic bonding02 engineering and technologyCooling capacity01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlechemistry.chemical_compound0103 physical sciencesThin filmlcsh:Science010306 general physicsAdiabatic processElectrical conductorMultidisciplinaryQSilver iodideRefrigerationBiaxial tensile testGeneral Chemistry021001 nanoscience & nanotechnologychemistryChemical physicslcsh:Q0210 nano-technologyNature Communications
researchProduct

High-Pressure Phase Diagram and Superionicity of Alkaline Earth Metal Difluorides

2018

We study the high-pressure–high-temperature phase diagram and superionicity of alkaline earth metal (AEM) difluorides (AF2, A = Ca, Sr, Ba) with first-principles simulation methods. We find that the superionic behavior of SrF2 and BaF2 at high pressures differ appreciably from that previously reported for CaF2 [Phys. Rev. Lett. 2014, 113, 235902]. Specifically, the critical superionic temperature of SrF2 and BaF2 in the low-pressure cubic fluorite phase is not reduced by effect of compression, and the corresponding high-pressure orthorhombic contunnite phases become superionic at elevated temperatures. We get valuable microscopic insights into the superionic features of AEM difluorides in b…

Alkaline earth metalMaterials scienceIonic radiusDifluorideThermodynamics02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorite0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyPhase (matter)High pressureOrthorhombic crystal systemPhysical and Theoretical Chemistry0210 nano-technologyPhase diagramThe Journal of Physical Chemistry C
researchProduct