0000000000916754

AUTHOR

P. Calanca

showing 1 related works from this author

Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies.

2020

13 pages; International audience; The physiological development of insect pests is driven by temperature and photoperiod. Geographic variations in the speed of growth reflect current patterns in thermal conditions as a function of latitude and altitude. Global warming will likely lead to shifts in pests’ phenology. Insects are expected to overwinter earlier and develop more generations, with implications for the risks of damage to agricultural crops. Understanding and monitoring of the voltinism of insect pests will be increasingly important to anticipate critical phases of pest development and devise options for adapting pest control measures. In this study, we describe a new generic pheno…

0106 biological sciencesPhotoperiodLobesia botrana010603 evolutionary biology01 natural sciencesAltitudeLobesia botranaOverwinteringGeneric phenological modellingbiologyEcologybusiness.industryPhenology010604 marine biology & hydrobiologyEcological ModelingGlobal warmingVoltinismPest controlTemperaturebiology.organism_classificationVoltinismProcess-based modelPEST analysis[SDE.BE]Environmental Sciences/Biodiversity and Ecologybusiness[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct