0000000000918457
AUTHOR
D. Belver
Study of scintillation light collection, production and propagation in a 4 tonne dual-phase LArTPC
The $3 \times 1 \times 1$ m$^3$ demonstrator is a dual phase liquid argon time projection chamber that has recorded cosmic rays events in 2017 at CERN. The light signal in these detectors is crucial to provide precise timing capabilities. The performances of the photon detection system, composed of five PMTs, are discussed. The collected scintillation and electroluminescence light created by passing particles has been studied in various detector conditions. In particular, the scintillation light production and propagation processes have been analyzed and compared to simulations, improving the understanding of some liquid argon properties.
Deep sub-threshold $K^\ast (892)^{\circ}$ production in collisions of Ar + KCl at 1.76 A GeV
Volume IV The DUNE far detector single-phase technology
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…
Neutrino interaction classification with a convolutional neural network in the DUNE far detector
The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino…
pp and ππ intensity interferometry in collisions of Ar+KCl at 1.76A GeV
Results on pp, π+π+, and π-π- intensity interferometry are reported for collisions of Ar+KCl at 1.76$A$~GeV beam energy, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. The experimental correlation functions as a function of the relative momentum are compared to model calculations allowing the determination of the space-time extent of the corresponding emission sources. The π π source radii are found significantly larger than the pp emission radius. The present radii do well complement the source-size excitation functions of the collision system of size $A+A \simeq 40+40$. The pp source radius at fixed beam energy is found to increase linearly with the cube r…
Deep sub-threshold K*(892)0 production in collisions of Ar + KCl at 1.76A GeV
Results on the deep sub-threshold production of the short-lived hadronic resonance K*(892)0 are reported for collisions of Ar + KCl at 1.76A GeV beam energy, studied with the High Acceptance Di-Electron Spectrometer (HADES) at SIS18/GSI. The K*(892)0 production probability per central collision of \( P_{K^{*0}}=(4.4\pm 1.1 \pm 0.5)\times 10^{-4}\) and the K*(892)0/K0 ratio of \( P_{K^{*0}}/P_{K^0}=(1.9\pm 0.5\pm 0.3)\times 10^{-2}\) are determined at the lowest energy so far (i.e. deep below the threshold for the corresponding production in nucleon-nucleon collisions, \( \sqrt{s_{NN}}-\sqrt{s_{thr}}=-340\) MeV). The K*0/K0 ratio is compared with results of other experiments and with the pre…
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and offers several advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of \three has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillat…
Volume I. Introduction to DUNE
Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008
HADES experiment: di-lepton spectroscopy in p + p (2.2 GeV) and C+C (1 and 2 A GeV) collisions
The HADES (High Acceptance Di-Electron Spectrometer) is a tool designed for lepton pair (e+e−) spectroscopy in pion, proton and heavy ion induced reactions in the 1–2AGeV energy range. One of the goals of the HADES experiment is to study in-medium modifications of hadron properties like effective masses, decay widths, electromagnetic form factors etc. Such effects can be probed with vector mesons ( ρ,ω,ɸ ) decaying into e+e− channel. The identification of vector mesons by means of a HADES spectrometer is based on invariant mass reconstruction of e+e− pairs. The combined information from all spectrometer sub-detectors is used to reconstruct the di-lepton signal. The recent results from 2.2Ge…
Volume III. DUNE far detector technical coordination
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…