0000000000918733

AUTHOR

Thomas Otto

Polypropylene-based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: Switching from p-type to n-type by the addition of polyethylene glycol

Abstract The thermoelectric properties of melt processed conductive nanocomposites consisting of an insulating polypropylene (PP) matrix filled with singlewalled carbon nanotubes (CNTs) and copper oxide (CuO) were evaluated. An easy and cheap route to switch p-type composites into n-type was developed by adding polyethylene glycol (PEG) during melt mixing. At the investigated CNT concentrations of 0.8 wt% and 2 wt% (each above the electrical percolation threshold of ∼0.1 wt%), and a fixed CuO content of 5 wt%, the PEG addition converted p-type composites (positive Seebeck coefficient (S)) into n-type (negative S). PEG was also found to improve the filler dispersion inside the matrix. Two co…

research product

Genotyping NAT2 with only two SNPs (rs1041983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-SNP NAT2 genotype

Genotyping N-acetyltransferase 2 (NAT2) is of high relevance for individualized dosing of antituberculosis drugs and bladder cancer epidemiology. In this study we compared a recently published tagging single nucleotide polymorphism (SNP) (rs1495741) to the conventional 7-SNP genotype (G191A, C282T, T341C, C481T, G590A, A803G and G857A haplotype pairs) and systematically analysed if novel SNP combinations outperform the latter. For this purpose, we studied 3177 individuals by PCR and phenotyped 344 individuals by the caffeine test. Although the tagSNP and the 7-SNP genotype showed a high degree of correlation (R=0.933, P0.0001) the 7-SNP genotype nevertheless outperformed the tagging SNP wit…

research product