0000000000919543

AUTHOR

Laura Cancedda

showing 3 related works from this author

Rescuing Over-activated Microglia Restores Cognitive Performance in Juvenile Animals of the Dp(16) Mouse Model of Down Syndrome.

2020

Microglia are brain-resident immune cells and regulate mechanisms essential for cognitive functions. Down syndrome (DS), the most frequent cause of genetic intellectual disability, is caused by a supernumerary chromosome 21, containing also genes related to the immune system. In the hippocampus of the Dp(16) mouse model of DS and DS individuals, we found activated microglia, as assessed by their morphology; activation markers; and, for DS mice, electrophysiological profile. Accordingly, we found increased pro-inflammatory cytokine levels and altered interferon signaling in Dp(16) hippocampi. DS mice also showed decreased spine density and activity of hippocampal neurons and hippocampus-depe…

0301 basic medicineAdultMaleDown syndromeDendritic spinemedicine.medical_treatmentAminopyridinesMice TransgenicHippocampal formationHippocampus03 medical and health sciencesMice0302 clinical medicineImmune systemCognitionMedicineHippocampus (mythology)AnimalsHumansPyrrolesNeuroinflammationMicrogliabusiness.industryGeneral NeuroscienceAnti-Inflammatory Agents Non-SteroidalAge Factorsmedicine.disease3. Good healthMice Inbred C57BLDisease Models Animal030104 developmental biologymedicine.anatomical_structureCytokinenervous systemFemaleMicrogliaDown SyndromebusinessNeuroscience030217 neurology & neurosurgeryNeuron
researchProduct

Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

2012

International audience; During brain development, there is a progressive reduction of intracellular chloride associated with a shift in GABA polarity: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent ``Hypothesis and Theory Article,'' the excitatory action of GABA in early …

GABA; giant depolarizing potentials; energy substrates; brain slices; chloride homeostasis; developmentBrain developmentchloride homeostasisPolarity (physics)energy substratesBiologylcsh:RC321-57103 medical and health sciencesCellular and Molecular NeuroscienceGABA0302 clinical medicineGiant depolarizing potentialsNeuronal damageAnimal speciesDevelopmental neurobiologybooklcsh:Neurosciences. Biological psychiatry. Neuropsychiatrydevelopment030304 developmental biology0303 health sciencesbrain slicesHypothesis and Theory Articledevelopment.Excitatory postsynaptic potentialbook.journal[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]giant depolarizing potentialsNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice.

2018

See Contreras and Hippenmeyer (doi:10.1093/brain/awy218) for a scientific commentary on this article. Autism spectrum disorders (ASDs) are complex conditions with diverse aetiologies. Szczurkowska et al. demonstrate that two ASD-related molecules – FGFR2 and Negr1 – physically interact to act on the same downstream pathway, and regulate cortical development and ASD-relevant behaviours in mice. Identifying common mechanisms in ASDs may reveal targets for pharmacological intervention.

0301 basic medicineMAPK/ERK pathwaygenetic structuresAutism Spectrum DisorderFGFR2 signalingFibroblast growth factorReceptor tyrosine kinaseMiceautism; development; cell adhesion; in utero electroporation; FGFR2 signaling0302 clinical medicineCell MovementCerebral CortexMice KnockoutbiologyBehavior AnimalKinaseCell adhesion moleculeCell biologyProtein TransportSignal Transductionmusculoskeletal diseasesMAP Kinase Signaling SystemCell Adhesion Molecules NeuronalDendritic SpinesNeurogenesisautismDown-Regulationbehavioral disciplines and activities03 medical and health sciencesmental disordersmedicineAnimalsHumansAutistic DisorderReceptor Fibroblast Growth Factor Type 2developmentProtein kinase BFibroblast growth factor receptor 2Cell Membranecell adhesionOriginal Articlesin utero electroporationmedicine.diseaseMice Inbred C57BLDisease Models Animal030104 developmental biologyHEK293 Cellsbiology.proteinAutismNeurology (clinical)030217 neurology & neurosurgeryBrain : a journal of neurology
researchProduct