0000000000922144
AUTHOR
Eduardo Weruaga
Bilateral olfactory deprivation reveals a selective noradrenergic regulatory input to the olfactory bulb.
Unilateral olfactory deprivation in the rat induces changes in the catecholaminergic system of the olfactory bulb. Nevertheless, evidence suggests that unilateral deprivation does not fully prevent stimulation of the deprived bulb. The present report analyses the response of the catecholaminergic system of the olfactory bulb in fully deprived rats obtained by bilateral naris occlusion. The complete deprivation produces more rapid and dramatic changes in both the intrinsic and extrinsic catecholaminergic systems of the olfactory bulb. Intrinsic responses involve a rapid decrease in dopamine-containing cells to about 25% of controls, correlated with a decreased Fos expression in juxtaglomerul…
Types of cholecystokinin-containing periglomerular cells in the mouse olfactory bulb
The periglomerular cells (PG) of the olfactory bulb (OB) are involved in the primary processing and the refinement of sensory information from the olfactory epithelium. The neurochemical composition of these neurons has been studied in depth in many species, and over the last decades such studies have focused mainly on the rat. The increasing use of genetic models for research into olfactory function demands a profound characterization of the mouse olfactory bulb, including the chemical composition of bulbar interneurons. Regarding both their connectivity with the olfactory nerve and their neurochemical fate, recently, two different types of PG have been identfied in the mouse. In the prese…