0000000000924372
AUTHOR
S. Wolfsheimer
Monte Carlo Study of the Isotropic-Nematic Interface in Suspensions of Spherocylinders
The isotropic to nematic transition in suspensions of anisotropic colloids is studied by means of grand canonical Monte Carlo simulation. From measurements of the grand canonical probability distribution of the particle density, the coexistence densities of the isotropic and the nematic phase are determined, as well as the interfacial tension.
Isotropic-nematic interface in suspensions of hard rods: Mean-field properties and capillary waves
We present a study of the isotropic-nematic interface in a system of hard spherocylinders. First we compare results from Monte Carlo simulations and Onsager density functional theory for the interfacial profiles of the orientational order parameter and the density. Those interfacial properties that are not affected by capillary waves are in good agreement, despite the fact that Onsager theory overestimates the coexistence densities. Then we show results of a Monte Carlo study of the capillary waves of the interface. In agreement with recent theoretical investigations (Eur.Phys.J. E {\bf 18} 407 (2005)) we find a strongly anistropic capillary wave spectrum. For the wave-numbers accessed in o…
Isotropic-nematic interfacial tension of hard and soft rods: Application of advanced grand canonical biased-sampling techniques
Coexistence between the isotropic and the nematic phase in suspensions of rods is studied using grand canonical Monte Carlo simulations with a bias on the nematic order parameter. The biasing scheme makes it possible to estimate the interfacial tension gamma in systems of hard and soft rods. For hard rods with L/D=15, we obtain gamma ~ 1.4 kB T/L^2, with L the rod length, D the rod diameter, T the temperature, and kB the Boltzmann constant. This estimate is in good agreement with theoretical predictions, and the order of magnitude is consistent with experiments.