0000000000924529

AUTHOR

Abuzer Yakaryılmaz

Probabilistic verification of all languages

We present three protocols for verifying all languages: (i) For any unary (binary) language, there is a log-space (linear-space) interactive proof system (IPS); (ii) for any language, there is a constant-space weak-IPS (the non-members may not be rejected with high probability); and, (iii) for any language, there is a constant-space IPS with two provers where the verifier reads the input once. Additionally, we show that uncountably many binary (unary) languages can be verified in constant space and in linear (quadratic) expected time.

research product

Alternating, private alternating, and quantum alternating realtime automata

We present new results on realtime alternating, private alternating, and quantum alternating automaton models. Firstly, we show that the emptiness problem for alternating one-counter automata on unary alphabets is undecidable. Then, we present two equivalent definitions of realtime private alternating finite automata (PAFAs). We show that the emptiness problem is undecidable for PAFAs. Furthermore, PAFAs can recognize some nonregular unary languages, including the unary squares language, which seems to be difficult even for some classical counter automata with two-way input. Regarding quantum finite automata (QFAs), we show that the emptiness problem is undecidable both for universal QFAs o…

research product

Probabilistic verifiers for asymmetric debates

We examine the power of silent constant-space probabilistic verifiers that watch asymmetric debates (where one side is unable to see some of the messages of the other) between two deterministic provers, and try to determine who is right. We prove that probabilistic verifiers outperform their deterministic counterparts as asymmetric debate checkers. It is shown that the membership problem for every language in NSPACE(s(n)) has a 2^{s(n)}-time debate where one prover is completely blind to the other one, for polynomially bounded space constructible s(n). When partial information is allowed to be seen by the handicapped prover, the class of languages debatable in 2^{s(n)} time contains TIME(2^…

research product

New results on classical and quantum counter automata

We show that one-way quantum one-counter automaton with zero-error is more powerful than its probabilistic counterpart on promise problems. Then, we obtain a similar separation result between Las Vegas one-way probabilistic one-counter automaton and one-way deterministic one-counter automaton. We also obtain new results on classical counter automata regarding language recognition. It was conjectured that one-way probabilistic one blind-counter automata cannot recognize Kleene closure of equality language [A. Yakaryilmaz: Superiority of one-way and realtime quantum machines. RAIRO - Theor. Inf. and Applic. 46(4): 615-641 (2012)]. We show that this conjecture is false, and also show several s…

research product

Uncountable realtime probabilistic classes

We investigate the minimum cases for realtime probabilistic machines that can define uncountably many languages with bounded error. We show that logarithmic space is enough for realtime PTMs on unary languages. On binary case, we follow the same result for double logarithmic space, which is tight. When replacing the worktape with some limited memories, we can follow uncountable results on unary languages for two counters.

research product

Cost-efficient QFA Algorithm for Quantum Computers

The study of quantum finite automata (QFAs) is one of the possible approaches in exploring quantum computers with finite memory. Despite being one of the most restricted models, Moore-Crutchfield quantum finite automaton (MCQFA) is proven to be exponentially more succinct than classical finite automata models in recognizing certain languages such as $\mathtt{MOD}_p = \{ a^{j} \mid j \equiv 0 \mod p\}$, where $p$ is a prime number. In this paper, we present a modified MCQFA algorithm for the language $\mathtt{MOD}_p$, the operators of which are selected based on the basis gates on the available real quantum computers. As a consequence, we obtain shorter quantum programs using fewer basis gat…

research product