0000000000925058
AUTHOR
Cd O'leary
A triplet of differently shaped spin-zero states in the atomic nucleus 186Pb
Understanding the fundamental excitations of many-fermion systems is of significant current interest. In atomic nuclei with even numbers of neutrons and protons, the low-lying excitation spectrum is generally formed by nucleon pair breaking and nuclear vibrations or rotations. However, for certain numbers of protons and neutrons, a subtle rearrangement of only a few nucleons among the orbitals at the Fermi surface can result in a different elementary mode: a macroscopic shape change. The first experimental evidence for this phenomenon came from the observation of shape coexistence in 16O (ref. 4). Other unexpected examples came with the discovery of fission isomers and super-deformed nuclei…
Competing T = 0 and T = 1 structures in the N = Z nucleus $^{62}_{31}$Ga
Abstract The low-lying levels in the odd-odd N = Z nucleus 62 Ga have been identified for the first time. These data reveal a cascade of stretched-E2 transitions based on a T =0, 1 + bandhead which decays directly to the T =1, 0 + ground state. The observed levels are interpreted in the context of theshell model, using as a basis, the pf 5/2 g 9/2 orbits with a 56 Ni core.