0000000000925151
AUTHOR
L. Al Ayoubi
Odd-odd neutron-rich rhodium isotopes studied with the double Penning trap JYFLTRAP
Precision mass measurements of neutron-rich rhodium isotopes have been performed at the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. We report results on ground- and isomeric-state masses in $^{110,112,114,116,118}$Rh and the very first mass measurement of $^{120}$Rh. The isomeric states were separated and measured for the first time using the phase-imaging ion-cyclotron-resonance (PI-ICR) technique. For $^{112}$Rh, we also report new half-lives for both the ground state and the isomer. The results are compared to theoretical predictions using the BSkG1 mass model and discussed in terms of triaxial deformation.
Evidence of a sudden increase in the nuclear size of proton-rich silver-96
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…
First trap-assisted decay spectroscopy of the $$^{81}$$Ge ground state
AbstractThe $$\beta $$ β -delayed $$\gamma $$ γ spectroscopy of $$^{81}$$ 81 As has been performed using a purified beam of $$^{81}$$ 81 Ge $$(9/2^+)$$ ( 9 / 2 + ) ground state at the Ion Guide Isotope Separator On-Line facility (IGISOL). The $$^{81}$$ 81 Ge$$^+$$ + ions were produced using proton-induced fission of $$^{232}$$ 232 Th and selected with the double Penning trap JYFLTRAP for the post-trap decay spectroscopy measurements. The low-spin $$(1/2^+)$$ ( 1 / 2 + ) isomeric-state ions $$^{81m}\hbox {Ge}^+$$ 81 m Ge + were not observed in the fission products. The intrinsic half-life of the $$^{81}$$ 81 Ge ground state has been determined as $$T_{1/2}=6.4(2)~\hbox {s}$$ T 1 / 2 = 6.4 ( …