Long time behavior for a dissipative shallow water model
We consider the two-dimensional shallow water model derived by Levermore and Sammartino (Nonlinearity 14,2001), describing the motion of an incompressible fluid, confined in a shallow basin, with varying bottom topography. We construct the approximate inertial manifolds for the associated dynamical system and estimate its order. Finally, considering the whole domain R^2 and under suitable conditions on the time dependent forcing term, we prove the L^2 asymptotic decay of the weak solutions.