0000000000925535
AUTHOR
Lukas Woike
A Classification of Modular Functors via Factorization Homology
Modular functors are traditionally defined as systems of projective representations of mapping class groups of surfaces that are compatible with gluing. They can formally be described as modular algebras over central extensions of the modular surface operad, with the values of the algebra lying in a suitable symmetric monoidal $(2,1)$-category $\mathcal{S}$ of linear categories. In this paper, we prove that modular functors in $\mathcal{S}$ are equivalent to self-dual balanced braided algebras $\mathcal{A}$ in $\mathcal{S}$ (a categorification of the notion of a commutative Frobenius algebra) for which a condition formulated in terms of factorization homology with coefficients in $\mathcal{…
The distinguished invertible object as ribbon dualizing object in the Drinfeld center
We prove that the Drinfeld center $Z(\mathcal{C})$ of a pivotal finite tensor category $\mathcal{C}$ comes with the structure of a ribbon Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. Phrased operadically, this makes $Z(\mathcal{C})$ into a cyclic algebra over the framed $E_2$-operad. The underlying object of the dualizing object is the distinguished invertible object of $\mathcal{C}$ appearing in the well-known Radford isomorphism of Etingof-Nikshych-Ostrik. Up to equivalence, this is the unique ribbon Grothendieck-Verdier structure on $Z(\mathcal{C})$ extending the canonical balanced braided structure that $Z(\mathcal{C})$ already comes equipped with. The duality fun…