0000000000926936

AUTHOR

P. D. Eversheim

showing 6 related works from this author

Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

2017

The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, $R_{2\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of $\approx 20\degree$ to $80\degree$. The relative luminosity between the two beam species was mo…

ratioPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesSocio-culturaleGeneral Physics and AstronomyElectron01 natural sciencestransfersNuclear physicsEconomica0103 physical sciencesddc:550electromagnetic form factorsNuclear Experiment (nucl-ex)010306 general physicselectromagnetic form factors transfers ratioNuclear ExperimentPhysicsLuminosity (scattering theory)010308 nuclear & particles physicsScatteringGenerator (category theory)Form factor (quantum field theory)BremsstrahlungHigh Energy Physics::ExperimentLeptonPhysical Review Letters
researchProduct

First Measurement of Transverse-Spin-Dependent Azimuthal Asymmetries in the Drell-Yan Process

2017

The first measurement of transverse-spin-dependent azimuthal asymmetries in the pion-induced Drell-Yan (DY) process is reported. We use the CERN SPS 190 GeV/$c$, $\pi^{-}$ beam and a transversely polarized ammonia target. Three azimuthal asymmetries giving access to different transverse-momentum-dependent (TMD) parton distribution functions (PDFs) are extracted using dimuon events with invariant mass between 4.3 GeV/$c^2$ and 8.5 GeV/$c^2$. The observed sign of the Sivers asymmetry is found to be consistent with the fundamental prediction of Quantum Chromodynamics (QCD) that the Sivers TMD PDFs extracted from DY have a sign opposite to the one extracted from semi-inclusive deep-inelastic sc…

Drell-Yan process550ComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONNuclear TheoryGeneral Physics and Astronomyparton: distribution functiontransverse momentum dependence01 natural sciencesCOMPASSHigh Energy Physics - ExperimentSivers functionHigh Energy Physics - Experiment (hep-ex)semi-inclusive reaction [deep inelastic scattering]High Energy Physics - Phenomenology (hep-ph)ddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimenttransversityPhysicsQuantum chromodynamics(muon+ muon-) [mass spectrum]Large Hadron Colliderdeep inelastic scattering: semi-inclusive reactionpolarized target: transverse190 GeV/ctransverse [polarized target]nucleonDrell–Yan processhep-phdimuon: mass spectrumAzimuthHigh Energy Physics - PhenomenologyTransverse planeasymmetry [angular distribution]pi- nucleus: scatteringmass spectrum [dimuon]distribution function [parton]Nucleonspin: asymmetryParticle Physics - ExperimentParticle physicsangular distribution: asymmetryscattering [pi- nucleus]ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSAccelerator Physics and InstrumentationGeneralLiterature_MISCELLANEOUSNuclear physicsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesquantum chromodynamicsuniversality010306 general physicsParticle Physics - Phenomenology010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringCERN SPSmass spectrum: (muon+ muon-)ComputingMethodologies_PATTERNRECOGNITION[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Physics::Accelerator Physics[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentasymmetry [spin]experimental results
researchProduct

Measurement of the Charge-Averaged Elastic Lepton-Proton Scattering Cross Section by the OLYMPUS Experiment

2020

Physical review letters 126(16), 162501 (1-6) (2021). doi:10.1103/PhysRevLett.126.162501

ProtonPhysics::Instrumentation and Detectorselectromagnetic [calorimeter]elastic scatteringGeneral Physics and AstronomyElectronmomentum transfer dependence01 natural sciencesEconomicaelectromagnetic form factorsDESY LabNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsElastic scatteringLuminosity (scattering theory)Form factor (quantum field theory)elastic scattering [cross section]recoil [p]beam [positron]target [hydrogen]electromagnetic [form factor]electron-proton scatteringSocio-culturaleFOS: Physical sciences530electron p: scatteringNuclear physicsCross section (physics)PE2_2PE2_10103 physical sciencesform factor [p]p: recoilddc:530cross section: elastic scattering010306 general physicsPE2_3hydrogen: targetNuclear Physicspositron p: scatteringAmbientalepositron-proton scatteringDESYscattering [electron p]form factor: electromagneticscattering [positron p]positron: beamcalorimeter: electromagneticp: form factorPhysics::Accelerator PhysicsHigh Energy Physics::Experimentspectrometerexperimental resultsLeptonPhysical Review Letters
researchProduct

Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering

2013

Large samples of \Lambda, \Sigma(1385) and \Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \Sigma(1385)^+, \Sigma(1385)^-, \bar{\Sigma}(1385)^-, \bar{\Sigma}(1385)^+, \Xi(1321)^-, and \bar{\Xi}(1321)^+ hyperons decaying into \Lambda(\bar{\Lambda})\pi were measured. The heavy hyperon to \Lambda and heavy antihyperon to \bar{\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

disParticle physicsStrange quarkdis; hyperon productionPhysics and Astronomy (miscellaneous)diLambda01 natural sciencesCOMPASSHigh Energy Physics - Experimenthyperon production0103 physical sciencesCHARGED CURRENT INTERACTIONSCHARGED CURRENT INTERACTIONS; (LAMBDA)OVER-BAR POLARIZATION; COMPASS010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsMuon010308 nuclear & particles physicsGenerator (category theory)High Energy Physics::PhenomenologyHyperon(LAMBDA)OVER-BAR POLARIZATIONSigmaProduction (computer science)High Energy Physics::ExperimentParticle Physics - ExperimentBar (unit)
researchProduct

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

2017

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are pres…

CERN LabComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONMULTIPLICITIESdimension: 3PT DEPENDENTComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMStarget: isoscalarmuon deuteron: deep inelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-extransverse momentum dependencehadron: transverse momentumSIDISCOMPASSGeneralLiterature_MISCELLANEOUSHigh Energy Physics - Experimentscaling: BjorkenSubatomär fysikcharged particle: multiplicityHigh Energy Physics - Experiment (hep-ex)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]mass: hadronicSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)quantum chromodynamics: perturbation theoryNuclear ExperimentNuclear ExperimentDIShep-exhadron: multiplicityeffect: nonperturbativeperturbation theory: higher-orderCERN SPSphoton: energysemi-inclusive reactionComputingMethodologies_PATTERNRECOGNITIONkinematicsDIS; SIDIS; MULTIPLICITIES; PT DEPENDENTHigh Energy Physics::ExperimentParticle Physics - Experimentexperimental resultsphoton: virtual
researchProduct

Measurement of the Charged-Pion Polarizability

2015

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma\rightarrow \pi^-\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}$, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$\,(GeV/$c$)$^2$. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3$ under the …

Particle physicsChiral perturbation theoryPhotonComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONStrong interactionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSGeneralLiterature_MISCELLANEOUSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPolarizabilityNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsChPTMuonCompton scatteringpolarisabilitypolarisability; ChPTComputingMethodologies_PATTERNRECOGNITIONHigh Energy Physics::ExperimentMagnetic dipoleParticle Physics - Experiment
researchProduct